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Abstract. In vitro experiments with cell cultures are essential for study-
ing growth and migration behaviour and thus, for gaining a better under-
standing of cancer progression and its treatment. While recent progress
in lens-free microscopy (LFM) has rendered it an inexpensive tool for
continuous monitoring of these experiments, there is only little work on
analysing such time-lapse sequences.
We propose (1) a cell detector for LFM images based on residual learn-
ing, and (2) a probabilistic model based on moral lineage tracing that
explicitly handles multiple detections and temporal successor hypothe-
ses by clustering and tracking simultaneously. (3) We benchmark our
method on several hours of LFM time-lapse sequences in terms of detec-
tion and tracking scores. Finally, (4) we demonstrate its effectiveness for
quantifying cell population dynamics.

1 Introduction

Cell growth and migration play key roles in cancer progression: abnormal cell
growth can lead to formation of tumors and cancer cells can spread to other parts
of the body, a process known as metastasis. In vitro experiments are essential
to understand these mechanisms and for developing anti-cancer drugs. In these
experiments, the cells are typically observed with conventional light microscopes.
Thanks to recent advances in CMOS sensor technology, lens-free microscopy
(LFM) [13,4] has become a promising alternative. In LFM a part of the incident
wavefront originating from the light source is scattered by the sample, in this
case the cell. The scattered light then interferes with the unscattered part of
the wavefront and the resulting interference pattern is recorded with a CMOS
sensor. The components required for LFM are extremely small and cheap. Thus,
LFM provides the means for a wide range of applications where a conventional
light microscope would be either too big or simply too expensive, such as the
continuous monitoring of growing cell cultures inside standard incubators [9].

To quantify the clinically relevant information on cell growth and migration
from the large amount of images that are acquired in such continuous monitoring,
reliable automatic image analysis methods are crucial. Counting the number of
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Fig. 1. The cell lineage tracing problem with LFM data. We aim to detect all cells
and establish their relation over time, i.e. determine the lineage forest. While the LFM
technology allows for frequent image acquisition (3 min / frame in this case), challenges
arise due to overlapping interference patterns of close objects, fluctuating shape and
size of the cells appearance, and particles that generate similar patterns as the cells.
The detail views show cell locations as a circle and identify their lineage tree.

cells in a time series of images gives access to the dynamics of cell growth.
Locating and tracing individual cells provides information about cell motility,
and over the course of a sequence, reconstructing the lineage trees gives insights
into cell cycle timings and allows more selective analysis of cell sub-cultures.

There are several works on these tasks in traditional light microscopy, e.g.
focussing on cell segmentation [15], detection and counting [8,10,16] or track-
ing [1,6,7,12,14], but very few deal with LFM data. One of the few exceptions
is [3] which employs a regression framework for estimating the total cell count
per image. We aim at the more complex goal of not only counting but also lo-
calizing cells and reconstructing their spatio-temporal lineage forest (c.f. Fig. 1).
Methods for the latter task range from Kalman filtering [1] to keep track of mov-
ing cells, or iteratively composing tracklets by using the Viterbi algorithm [11],
and have been compared in [12]. More recently, Jug et al. [7] have proposed
a mathematically rigorous framework for lineage reconstruction, the so-called
moral lineage tracing problem (MLTP). The MLTP differs fundamentally from
all mathematical abstractions of cell tracking whose feasible solutions are either
disjoint paths or disjoint trees of detections. Unlike these approaches that select
only one detection for each cell in every image, feasible solutions of the MLTP
select and cluster an arbitrary set of such detections for each cell. This renders
the lineage trees defined by feasible solutions of the MLTP robust to the addition
of redundant detections, a property we will exploit in this work.

In this paper, we contribute a framework for analysis of LFM sequences.
First, we design and benchmark robust cell detectors for LFM time-lapse se-
quences derived from most recent work on convolutional neural networks and
residual learning. Second, we discuss the MLTP in the context of LFM data. In
particular, we define a probability measure for which the MLTP is a maximum
a posteriori (MAP) estimator. This allows us to define the costs in the objective
function of the MLTP w.r.t. probabilities that we estimate from image data. We
validate it experimentally on two annotated sequences. Finally, we demonstrate
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Fig. 2. Illustration of our workflow. From left to right: 1) Raw microscopy image, 2)
image overlayed with cell probability map generated by the detector, 3) nodes of the
hypothesis graph with spatial edges constructed from cell probabilities, 4) optimized
lineage where spatial edges that were cut are removed, and 5) each cluster is represented
as one cell with its lineage tree identifier. Temporal edges are not depicted for simplicity.

the capability of our approach to quantify biologically relevant parameters from
sequences of two in vitro experiments with skin cancer cells.

2 Methods

We consider the lineage tracing task as a MAP inference over a hypothesis graph
containing a multitude of potential lineage forests. We discuss the probability
measure and its MAP estimator, the MLTP in Sec. 2.1. In order to construct
the hypothesis graph from a sequence of LFM images, we devise a cell detector
in Sec. 2.2, which estimates a cell probability map for each given image. The
workflow is illustrated in Fig. 2.

2.1 Lineage Tracing

Hypothesis graph. We construct a spatio-temporal hypothesis graph G =
(V,E) as follows: For every image It in the sequence, we apply a cell detector
and define one node v ∈ Vt for every local maximum in P (cs = 1|It), the es-
timated probability map for finding a cell at a particular location s in image
It. Additionally, we define hypothesized successors to each node that has one or
more favourable parents in the previous frame but no immediate successor. This
helps avoiding gaps in the final tracklets. The nodes v ∈ V represent cells, yet
do not need to be unique, i.e. one cell may give rise to several nodes. We then
construct edges in space Esp

t = {uv ∈ Vt × Vt : d(u, v) ≤ dmax}, i.e. between
any two nodes that lie within a distance of dmax, and in the same fashion, we
construct temporal edges Etmp

t = {uv ∈ Vt × Vt+1 : d(u, v) ≤ dmax} between
nodes in adjacent frames.

Probabilistic model. We introduce a family of probability measures, each
defining a conditional probability of any lineage forest, given an image sequence.
We describe the learning of this probability from a training set of annotated
image sequences as well as the inference of a maximally probable lineage for-
est, given a previously unseen image sequence. The resulting MAP estimation
problem will assume the form of an MLTP with probabilistically justified costs.



4 M. Rempfler et al.

First, we encode subgraphs in terms of cut edges with binary indicator vari-
ables x ∈ {0, 1}E . If edge uv is cut, i.e. xuv = 1, it means that nodes u and v
do not belong together. In order to ensure that the solution describes a lineage
forest, we rely on the formulation of the MLTP [7], which describes the set of
inequalities that are required to do so. In short, these constraints ensure: 1) spa-
tial and temporal consistency, i.e. if nodes u and v as well as v and w belong
together, then u and w must also belong together. 2) Distinct tracklets cannot
merge at a later point in time. These are the so called morality constraints. 3)
Bifurcation constraints allow cells to split in no more than two distinct succes-
sors. We will denote the set of x that describe valid lineage forests with XG.
For a more extensive discussion of these constraints, we refer to [7,14]. We next
model the measure of probability:

P (x|XG,Θ) ∝ P (XG|x)
∏
uv∈E

P (xuv|Θ)
∏
v∈V

P
(
x+v |Θ

) ∏
v∈V

P
(
x−v |Θ

)
, (1)

where P (XG|x) ∝
{

1 if x ∈ XG,

0 otherwise
. (2)

It is comprised of four parts. First, we have P (XG|x) representing the uniform
prior over XG. Second, the cut probability P (xuv|Θ) describing the probability
of u and v being part of the same cell (either in space or along time), and third
and fourth, the birth and termination probabilities P (x+v |Θ) and P (x−v |Θ) for
each node v ∈ V . The variables x+v , x

−
v ∈ {0, 1} are indicating whether the

respective event, birth or termination, occurs at node v. Θ denotes the joint
set of parameters. We use these parts to incorporate the following assumptions:
Two detections u and v that are close are more likely to originate from the same

cell, hence we choose P (xuv = 1|Θ) = min(d(u,v)θsp , 1). Similarly, two successive
detections u at t and v at t+1 are more likely to be related the closer they are, is

captured by P (xuv = 1|Θ) = min(d(u,v)θtmp , 1). Finally, we assume that birth and
termination events occur at a low rate, which is incorporated by P (x+v = 1|Θ) =
θ+ and P (x−v = 1|Θ) = θ−. We fit these parameters Θ on training data in
a maximum likelihood fashion: For θ− and θ+ this boils down to calculating
the relative frequency of the respective events on the annotated lineage. For
the spatial and temporal parameters θsp and θtmp, we first complement the
lineage forest with edges within dmax as E . We then maximize the log-likelihood
logL(θ) =

∑
uv∈E logP (xuv|θ) by an extensive search over the interval θ ∈

[θmin, θmax], where we found [1, 80] to be appropriate.
The MAP estimate x∗ = arg maxx∈X P (x|Θ, XG) can be written as solution

to the MLTP:

min

{ ∑
uv∈E

cuvxuv +
∑
v∈V

c+v x
+
v +

∑
v∈V

c−v x
−
v

∣∣∣∣ x ∈ XG ∩XV

}
, (3)

where the coefficients become cuv = − log P (xuv=1|Θ)
1−P (xuv=1|Θ) for edges, and vice versa

for cv of the node events. XV is the set of x that satisfy the auxiliary constraints



Cell Lineage Tracing in Lens-free Microscopy Videos 5

which tie birth and termination indicator variables x−v and x+v to the respective
edge variables. We optimize (3) with the KLB algorithm described in [14].

2.2 Cell Detection with Residual Networks

Cells in LFM images are usually only marked at their center of mass and not
segmented since their interference pattern, i.e. their appearance in the image,
does not accurately describe their true shape and would therefore be ambiguous
in many cases. Thus, we are interested in a detector that outputs the set of
cell centers in image It. Strong performance of the detector is crucial for the
lineage reconstruction as its errors can affect the final lineage trees over many
frames. To achieve this, we build on the recent work on residual networks [5].
However, instead of directly regressing bounding boxes or center coordinates
in a sliding window fashion, we train our network, denoted with f(It), on a
surrogate task: We approximate f(It) ≈ P (cs = 1|It), the probablity map of
finding a cell at a particular location s in It. This detector is fully convolutional
and its output f(It) has the same size as It. We found this to facilitate the
training as it enlargens the spatial support of the sparse cell center annotations
and gracefully handles the strongly varying cell density. Similar findings were
made with techniques that learn a distance transform to detect cells, e.g. in [8].
We describe next how we arrive at a suitable architecture for this task and how
to construct P (cs = 1|It) from point-wise cell annotations.
Network Architecture. We start from the architecture of ResNet-50 [5]. We
first truncate the network at layer 24 to obtain a fully convolutional detector. We
found that truncating in the middle of the original ResNet-50, i.e. at layer 24,
results in best resolution of the output response maps and allows to distinguish
close cells. We then add one convolutional layer of 1 × 1 × 256 and one up-
convolutional layer (also known as deconvolutional layer) of 8×8×1 with a stride
of 8. The former combines all feature channels, while the latter compensates for
previous pooling operations and ensures that the predicted cell probability map
has the same resolution as the input image It. Finally, a sigmoid activation
function is used in the last layer to ensure that f(It) is within the interval [0, 1]
at any point.
Loss Function & Training. We sample training images of size 224× 224 from
all frames of the training corpus. For each training image Ik, we construct a
corresponding cell probability map P (cs = 1|Ik) by placing a Gaussian kernelGσ

with σ = 8 at each annotated center. This implicitly represents the assumption
that all cells have about the same extent, which is reasonable for our microscopy
data. Each image is normalized to zero mean and unit variance. During training,
we minimize the cross entropy loss between the predicted map f(It) and P (cs|It)
in order to let our network approximate the constructed cell probability map. We
fine tune the network (pre-trained weights from ResNet-50 [5]) with a learning
rate of 10−3 for 100 epochs with batch size of 8. In each epoch, we sample 4000
training images. Since the annotated dataset for training is typically small and
shows strong correlation between cells in consecutive frames, we used dropout
of 0.5 after the last convolutional layer to avoid overfitting.
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Fig. 3. Performance of different detectors over all test
frames. Boxplots depict median as orange line, mean as
black square and outliers as grey +. The F1 scores are
shown in %. We find that ResNet-23 is the most robust
detector in our experiment with an average F1 of 94.1 %.
It is followed by the UNet with 89.2 %, ResNet-11 with
85.1 % and finally, CNN-4 with only 72.2 %.

3 Experiments & Results

Datasets. We use a sequence depicting A549 cells, annotated over 250 frames in
a region of interest (ROI) of 1295×971 px, for all training purposes. For testing,
we annotated two distinct sequences monitoring 3T3 cells of 350 and 300 frames
in a ROI of 639×511 px (3T3-I ) and 1051×801 px (3T3-II ), respectively. Images
were acquired at an interval of 3 min with 1.4µm× 1.4µm per pixel.
Benchmarking detectors. We compare four different network configurations,
including the described ResNet-23, ResNet-11, a variant of it which was trun-
cated at layer 11, the UNet [15] and CNN-4. In UNet, we obtained better results
when replacing the stacks in the expansive path with single up-convolution layers
which are merged with the corresponding feature maps from contracting path.
CNN-4 is a plain vanilla CNN with three 5× 5 convolutional layers followed by
max pooling and finally, one up-convolutional layer of 8 × 8 × 1 to compensate
for the down-sampling operations. We use the same training procedure (Sec. 2.2)
for all detectors, but adjust the learning rate for UNet and CNN-4 to 10−2.

We match annotated cells to detections within each frame with the hungarian
algorithm and consider only matches closer than 10 px (≈ a cell center region)
as a true positive (TP). Unmatched annotations are counted as false negative
(FN), unmatched detections as false positive (FP). The results are presented in
Fig. 3, where we find the ResNet-23 to be the most robust detector.
Lineage tracing. To compare the quality of different lineages, we match again
annotations and detections within each frame to calculate the number of TP, FP
and FN as described before. We then determine the number of false links, i.e.
how often two matched nodes do not have the same parent. From these, we cal-
culate multiple object detection accuracy (MODA) and multiple object tracking
accuracy (MOTA) [2]. Moreover, we derive the number of edit operations needed
to get from the predicted lineage to the ground truth lineage, and calculate the
tracking accuracy (TRA) score proposed in [12]. We use unit weight for each
type of edit (add or delete node or edge). This is justified by the fact that we
have point annotations for cells instead of segmentations, making both addition
and deletion equally expensive to correct.

For the MLTP, we compare the effect of varying θtmp, θsp together with
hypothesis graphs generated from the different detectors in Fig. 4. The opti-
mal parameter choice for ResNet-23 is at 10, i.e. a relatively small merge ra-
dius of favourable merges, while the other detectors considerably benefit from
wider ranges. In Table 1, we compare different lineage tracing approaches. Our
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Fig. 4. Sensitivity analysis of the lineage tracing model with different detectors. We
increase both edge cut parameters θtmp and θsp together. While the optimal choice in
combination with ResNet-23 is relatively small, i.e. at 10, the other detectors, which
suffer from many spurious detections, benefit from a wider range. Most notably, the
performance with CNN-4 improves up to a competitive TRA of 84.8 %.

Table 1. Quantitative evaluation of traced lineages. Precision, recall, F1 and MODA
are averaged over all frames of a sequence, while MOTA and TRA are global scores for
the entire lineage forest. All measures are in %. Disjoint trees (DTP) uses our ResNet-23
detections and is equivalent to MLTP with disabled spatial edges and no hypothesized
successors. LAPT is linear assignment problem tracking [6] and our baseline.

Instance Method Precision Recall F1 MODA MOTA TRA

3T3-I
LAPT 86.39 88.99 87.63 85.88 83.87 80.46
DTP 93.67 92.84 93.22 93.67 90.22 87.11
MLTP 97.09 93.19 95.07 97.18 95.67 92.58

3T3-II
LAPT 85.12 87.35 86.19 84.68 82.65 79.13
DTP 94.02 95.89 94.93 93.85 91.49 89.87
MLTP 96.46 96.12 96.28 96.45 95.43 93.76

baseline is linear assignment problem tracking (LAPT) [6]. The disjoint trees
method (DTP), uses our ResNet-23 detections but solves the disjoint trees prob-
lem instead, i.e. it considers only one detection per cell. We find that MLTP
outperforms both in terms of detection and tracking metrics.
Assessing cell population dynamics. We apply our method on data from
two experiments with skin cancer cells. In each, one population is exposed to an
inhibitor substance while the control is not. Figure 5 depicts the resulting statis-
tics. We observe the expected difference in growth rate, yet a more constrained
motility of the control cells, which is caused by the limited space.

4 Conclusions

We have presented a framework for automatic analysis of LFM time-lapse se-
quences. It transfers two recently proposed methods, residual learning [5] and
moral lineage tracing [7,14], to the task at hand. We have shown experimen-
tally that it is able to determine cell lineage forests of high quality and thereby
quantify several measures of interest for the analysis of in vitro experiments,
including cell population dynamics and motility.
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Fig. 5. Cell dynamics measured on two ex-
periments with skin cancer cell lines. One
population (blue) is exposed to an inhibitor
substance, while the other (orange) is not.
From left to right: Cell count over time, his-
tograms on cell motility (µm/3 min) and di-
visions rdiv/h. Cells that divide often are
more abundant in the control group.
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